- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Luo, Liangbing (3)
-
Gordina, Maria (2)
-
Butaev, Almaz (1)
-
Shanmugalingam, Nageswari (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We consider sub-Riemannian manifolds which are homogeneous spaces equipped with a sub-Riemannian structure induced by a transitive action by a Lie group. Then the corresponding sub-Laplacian is not an elliptic but a hypoelliptic operator. We study logarithmic Sobolev inequalities with respect to the hypoelliptic heat kernel measure on such spaces. We show that the logarithmic Sobolev constant can be chosen to depend only on the Lie group acting transitively on such a space but the constant is independent of the action of its isotropy group. This approach allows us to track the dependence of the logarithmic Sobolev constant on the geometry of the underlying space, in particular we show that the constant is independent of the dimension of the underlying spaces in several examples.more » « less
-
Butaev, Almaz; Luo, Liangbing; Shanmugalingam, Nageswari (, Potential Analysis)Abstract Given a compact doubling metric measure spaceXthat supports a 2-Poincaré inequality, we construct a Dirichlet form on$$N^{1,2}(X)$$ that is comparable to the upper gradient energy form on$$N^{1,2}(X)$$ . Our approach is based on the approximation ofXby a family of graphs that is doubling and supports a 2-Poincaré inequality (see [20]). We construct a bilinear form on$$N^{1,2}(X)$$ using the Dirichlet form on the graph. We show that the$$\Gamma $$ -limit$$\mathcal {E}$$ of this family of bilinear forms (by taking a subsequence) exists and that$$\mathcal {E}$$ is a Dirichlet form onX. Properties of$$\mathcal {E}$$ are established. Moreover, we prove that$$\mathcal {E}$$ has the property of matching boundary values on a domain$$\Omega \subseteq X$$ . This construction makes it possible to approximate harmonic functions (with respect to the Dirichlet form$$\mathcal {E}$$ ) on a domain inXwith a prescribed Lipschitz boundary data via a numerical scheme dictated by the approximating Dirichlet forms, which are discrete objects.more » « less
-
Gordina, Maria; Luo, Liangbing (, Journal of Functional Analysis)
An official website of the United States government
